

Object-Oriented Programming:
Why You're Doing It Wrong

Toby Inkster

Three weird tricks to make your object-oriented code
more encapsulated, more reusable, and more maintainable.

Toby Inkster (TOBYINK)

● Type::Tiny
● MooX::late
● Moops / Kavorka
● Test::Modern
● Pry
● Object::Util
● PerlX::Maybe
● Syntax::Collector

Object-Oriented Programming

● Examples in this presentation use Moo.
● Moo is a lightweight version of Moose.

● Most of these examples can be rewritten to use Moose with
only minor changes.

● Moo is still Perl
● You could implement any of this with just core Perl OO if you

were so inclined.

Stop creating mutable objects

http://www.diylol.com/

Stop creating mutable objects

● Perl Best Practices
recommends creating methods
called get_foo and set_foo.

my $obj = Pony->new(name => 'Pinkie Pie');

$obj->set_name('Twilight Sparkle');

say $obj->get_name();

Stop creating mutable objects

● Perl Best Practices
recommends creating methods
called get_foo and set_foo.

● Moose standard practice is to
have a single accessor called
foo that allows you to either get
or set the attribute value.

my $obj = Pony->new(name => 'Pinkie Pie');

$obj->name('Twilight Sparkle');

say $obj->name();

Stop creating mutable objects

● Perl Best Practices
recommends creating methods
called get_foo and set_foo.

● Moose standard practice is to
have a single accessor called
foo that allows you to either get
or set the attribute value.

● These are both wrong.

Stop creating mutable objects

my $alice = Person->new(

 name => 'Alice',

 best_pony => Pony->new(name => 'Twilight Sparkle'),

);

my $bob = Person->new(

 name => 'Bob',

 best_pony => $alice->best_pony(), # It's what brought us together

);

$alice->best_pony->set_name('Sunset Shimmer');

say $bob->best_pony->get_name(); # Spooky action at a distance

Stop creating mutable objects

my $conference = Event->new(start => DateTime->new(...));

my $keynote = Event->new(start => $conference->start);

We need the keynote to be at the end of the conference

$keynote->start->add(seconds => 5*60*60);

D'oh!

print $conference->start, "\n";

Stop creating mutable objects

● Make your accessors read-only.
● Don't allow an object's attribute values to be changed

after it's been constructed.
● Save yourself from spooky action at a distance.

Stop creating mutable objects

● Moose and Moo:

is => 'ro'

● Plain old Perl:

sub foo { $_[0]{foo} }

Stop creating mutable objects

● Make your accessors read-only.
● Don't allow an object's attribute values to be changed

after it's been constructed.
● Save yourself from spooky action at a distance.

● Sometimes you really need to model a changing world.

Stop creating mutable objects

my $alice = Person->new(

 name => 'Alice',

 best_pony => Pony->new(name => 'Twilight Sparkle'),

);

my $bob = Person->new(

 name => 'Bob',

 best_pony => $alice->best_pony(),

);

$alice->best_pony->set_name('Princess Twilight Sparkle'); # SPOILER ALERT!

say $bob->best_pony->get_name();

Stop creating mutable objects

package Pony {

 use Moo;

 has name => (

 is => 'ro',

 writer => 'rename',

);

}

Better than name() or set_name() because it's clear that this is

a method. It's a verb. It 'does something'.

$pony->rename('Princess Twilight Sparkle');

Stop creating mutable objects

● If you really need to model a changing world:
● Make attributes mutable:

– Only after careful consideration, not by default!
– Not if they are part of the object's intrinsic identity.

● Consider naming the writer method something that doesn't
sound like an attribute.

Stop writing 'private' methods

We can actually see you.

https://www.flickr.com/photos/a_gods_child/4553482717/

Stop writing 'private' methods

● Methods named with a leading underscore are not really
private.

● Subclasses can call them.
● Subclasses can override them.
● Even accidentally!

Stop writing 'private' methods

package Employee {

 use Moo;

 has name => (is => 'ro');

 sub _type { 'employee' }

 sub output { shift; say @_ }

 sub introduce_myself {

 my $self = shift;

 $self->output(

 'My name is ', $self->name, ' and I am an ', $self->_type,

);

 }

}

Stop writing 'private' methods

package Typist {

 use Moo;

 extends 'Employee';

 ...;

}

my $obj = Typist->new(name => 'Moneypenny');

$obj->introduce_myself();

Can't call method "press_button" on an undefined value at Typist.pm line 16

Stop writing 'private' methods
package Typist {

 use Moo;

 extends 'Employee';

 has default_keyboard => (is => 'lazy', builder => sub { Keyboard->new });

 sub output {

 my $self = shift;

 my $text = join '', @_;

 $self->_type($self->default_keyboard, $text);

 }

 sub _type {

 my $self = shift;

 my ($kb, $text) = @_;

 for (my $i = 0; $i < length $text; $i++) {

 $kb->press_button(substr($text, $i, 1));

 }

 $kb->press_button('Enter');

 }

}

Stop writing 'private' methods

● How can we fix this?

Stop writing 'private' methods

package Employee {

 use Moo;

 has name => (is => 'ro');

 sub _type { 'employee' }

 sub output { shift; say @_ }

 sub introduce_myself {

 my $self = shift;

 $self->output(

 'My name is ', $self->name, ' and I am an ', $self->_type,

);

 }

}

Stop writing 'private' methods

package Employee {

 use Moo;

 has name => (is => 'ro');

 my $_type = sub { 'employee' };

 sub output { shift; say @_ }

 sub introduce_myself {

 my $self = shift;

 $self->output(

 'My name is ', $self->name, ' and I am an ', $self->$_type,

);

 }

}

←a lexical method is just a coderef

Stop writing 'private' methods

package Employee {

 use Moo;

 has name => (is => 'ro');

 sub type { 'employee' }

 sub output { shift; say @_ }

 sub introduce_myself {

 my $self = shift;

 $self->output(

 'My name is ', $self->name, ' and I am an ', $self->type,

);

 }

}

←a public, documented method

Stop writing 'private' methods

● If a method is useful for end-users, then promote it to a
public method.

● If a method exists in your namespace, then document it.
● Otherwise, use 'lexical methods' – coderefs.

● For lexical accessors, see Lexical::Accessor.

Stop hard-coding stuff

Not a great idea.

http://www.diylol.com/

Stop hard-coding stuff

package MyAuth;

use Moo;

sub fetch_user_list {

 my $self = shift;

 my $ua = LWP::UserAgent->new();

 return $ua->get(

 "http://example.com/users.txt",

);

}

Stop hard-coding stuff

package MyAuth;

use Moo;

sub fetch_user_list {

 my $self = shift;

 my $ua = LWP::UserAgent->new();

 return $ua->get(

 "http://example.com/users.txt",

);

}

● URL
● User-agent

Stop hard-coding stuff

package MyAuth;

use Moo;

sub fetch_user_list {

 my $self = shift;

 my $ua = LWP::UserAgent->new();

 return $ua->get(

 "http://example.com/users.txt",

);

}

package MyAuth::Testing;

use Moo;

extends 'MyAuth';

sub fetch_user_list {

 my $self = shift;

 my $ua = LWP::UserAgent::WithLogging->new();

 return $ua->get(

 "http://example.com/users.txt",

);

}

Stop hard-coding stuff

package MyAuth;

use Moo;

sub fetch_user_list {

 my $self = shift;

 my $ua = LWP::UserAgent->new();

 return $ua->get(

 "http://example.com/users.txt",

);

}

package MyAuth;

use Moo;

has user_agent => (

 is => 'lazy',

 builder => sub { LWP::UserAgent->new() },

);

has user_list_url => (

 is => 'lazy',

 builder => sub { "http://example.com/users.txt" },

);

sub fetch_user_list {

 my $self = shift;

 $self->user_agent->get($self->user_list_url);

}

Stop hard-coding stuff

package MyAuth::Testing;

use Moo;

extends 'MyAuth';

sub _build_user_agent {

 LWP::UserAgent::WithLogging->new();

}

package MyAuth::Pony;

use Moo;

extends 'MyAuth';

sub _build_user_list_url {

 'http://example.com/everypony.txt';

}

Look, it's really easy to subclass now!

Stop hard-coding stuff

package MyAuth::Pony::Testing;

use Moo;

extends 'MyAuth';

sub _build_user_agent {

 LWP::UserAgent::WithLogging->new();

}

sub _build_user_list_url {

 'http://example.com/everypony.txt';

}

Stop hard-coding stuff

● Better for testing
● Better for extensibility

Stop hard-coding stuff

● Things that you might be hard-coding without realising:
● File paths

– Including the path to your config file
● Object instances
● Class names

– $class->new() is better than Class->new()

Why you were doing it wrong

● You created mutable objects
● You wrote 'private' methods
● You hard-coded stuff

How to do it right

● Create immutable objects
● is => 'ro'

● Avoid undocumented methods
● If they seem useful enough, document them
● Otherwise, make them coderefs so they stay private

● Stop hard-coding stuff
● is => 'lazy'

● builder => sub { ... }

That's all folks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

