
  

Object-Oriented Programming:
Why You're Doing It Wrong

Toby Inkster

Three weird tricks to make your object-oriented code
more encapsulated, more reusable, and more maintainable.



  

Toby Inkster (TOBYINK)

● Type::Tiny
● MooX::late
● Moops / Kavorka
● Test::Modern
● Pry
● Object::Util
● PerlX::Maybe
● Syntax::Collector



  

Object-Oriented Programming

● Examples in this presentation use Moo.
● Moo is a lightweight version of Moose.

● Most of these examples can be rewritten to use Moose with 
only minor changes.

● Moo is still Perl
● You could implement any of this with just core Perl OO if you 

were so inclined.



  

Stop creating mutable objects

http://www.diylol.com/



  

Stop creating mutable objects

● Perl Best Practices 
recommends creating methods 
called get_foo and set_foo.

my $obj = Pony->new(name => 'Pinkie Pie');

$obj->set_name('Twilight Sparkle');

say $obj->get_name();



  

Stop creating mutable objects

● Perl Best Practices 
recommends creating methods 
called get_foo and set_foo.

● Moose standard practice is to 
have a single accessor called 
foo that allows you to either get 
or set the attribute value.

my $obj = Pony->new(name => 'Pinkie Pie');

$obj->name('Twilight Sparkle');

say $obj->name();



  

Stop creating mutable objects

● Perl Best Practices 
recommends creating methods 
called get_foo and set_foo.

● Moose standard practice is to 
have a single accessor called 
foo that allows you to either get 
or set the attribute value.

● These are both wrong.



  

Stop creating mutable objects

my $alice = Person->new(

   name      => 'Alice',

   best_pony => Pony->new(name => 'Twilight Sparkle'),

);

my $bob   = Person->new(

   name      => 'Bob',

   best_pony => $alice->best_pony(),  # It's what brought us together

);

$alice->best_pony->set_name('Sunset Shimmer');

say $bob->best_pony->get_name();      # Spooky action at a distance



  

Stop creating mutable objects

my $conference = Event->new( start => DateTime->new(...) );

my $keynote    = Event->new( start => $conference->start );

# We need the keynote to be at the end of the conference

$keynote->start->add(seconds => 5*60*60);

# D'oh!

print $conference->start, "\n";



  

Stop creating mutable objects

● Make your accessors read-only.
● Don't allow an object's attribute values to be changed 

after it's been constructed.
● Save yourself from spooky action at a distance.



  

Stop creating mutable objects

● Moose and Moo:

is  => 'ro'

● Plain old Perl:

sub foo { $_[0]{foo} }



  

Stop creating mutable objects

● Make your accessors read-only.
● Don't allow an object's attribute values to be changed 

after it's been constructed.
● Save yourself from spooky action at a distance.

● Sometimes you really need to model a changing world.



  

Stop creating mutable objects

my $alice = Person->new(

   name      => 'Alice',

   best_pony => Pony->new(name => 'Twilight Sparkle'),

);

my $bob   = Person->new(

   name      => 'Bob',

   best_pony => $alice->best_pony(),

);

$alice->best_pony->set_name('Princess Twilight Sparkle');    # SPOILER ALERT!

say $bob->best_pony->get_name();



  

Stop creating mutable objects

package Pony {

   use Moo;

   has name => (

      is      => 'ro',

      writer  => 'rename',

   );

}

# Better than name() or set_name() because it's clear that this is

# a method. It's a verb. It 'does something'.

$pony->rename('Princess Twilight Sparkle');



  

Stop creating mutable objects

● If you really need to model a changing world:
● Make attributes mutable:

– Only after careful consideration, not by default!
– Not if they are part of the object's intrinsic identity.

● Consider naming the writer method something that doesn't 
sound like an attribute.



  

Stop writing 'private' methods

We can actually see you.

https://www.flickr.com/photos/a_gods_child/4553482717/



  

Stop writing 'private' methods

● Methods named with a leading underscore are not really 
private.

● Subclasses can call them.
● Subclasses can override them.
● Even accidentally!



  

Stop writing 'private' methods

package Employee {

   use Moo;

   has name => (is => 'ro');

   sub _type { 'employee' }

   sub output { shift; say @_ } 

   sub introduce_myself {

      my $self = shift;

      $self->output(

         'My name is ', $self->name, ' and I am an ', $self->_type,

      );

   }

}



  

Stop writing 'private' methods

package Typist {

   use Moo;

   extends 'Employee';

   ...;

}

my $obj = Typist->new(name => 'Moneypenny');

$obj->introduce_myself();

Can't call method "press_button" on an undefined value at Typist.pm line 16 



  

Stop writing 'private' methods
package Typist {

   use Moo;

   extends 'Employee';

   has default_keyboard => (is => 'lazy', builder => sub { Keyboard->new });

   sub output {

      my $self = shift;

      my $text = join '', @_;

      $self->_type($self->default_keyboard, $text);

   }

   sub _type {

      my $self = shift;

      my ($kb, $text) = @_;

      for (my $i = 0; $i < length $text; $i++) {

         $kb->press_button( substr($text, $i, 1) );

      }

      $kb->press_button('Enter');

   }

}  



  

Stop writing 'private' methods

● How can we fix this?



  

Stop writing 'private' methods

package Employee {

   use Moo;

   has name => (is => 'ro');

   sub _type { 'employee' }

   sub output { shift; say @_ } 

   sub introduce_myself {

      my $self = shift;

      $self->output(

         'My name is ', $self->name, ' and I am an ', $self->_type,

      );

   }

}



  

Stop writing 'private' methods

package Employee {

   use Moo;

   has name => (is => 'ro');

   my $_type = sub { 'employee' };

   sub output { shift; say @_ } 

   sub introduce_myself {

      my $self = shift;

      $self->output(

         'My name is ', $self->name, ' and I am an ', $self->$_type,

      );

   }

}

←a lexical method is just a coderef



  

Stop writing 'private' methods

package Employee {

   use Moo;

   has name => (is => 'ro');

   sub type { 'employee' }

   sub output { shift; say @_ } 

   sub introduce_myself {

      my $self = shift;

      $self->output(

         'My name is ', $self->name, ' and I am an ', $self->type,

      );

   }

}

←a public, documented method



  

Stop writing 'private' methods

● If a method is useful for end-users, then promote it to a 
public method.

● If a method exists in your namespace, then document it.
● Otherwise, use 'lexical methods' – coderefs.

● For lexical accessors, see Lexical::Accessor.



  

Stop hard-coding stuff

Not a great idea.

http://www.diylol.com/



  

Stop hard-coding stuff

package MyAuth;

use Moo;

sub fetch_user_list {

   my $self = shift;

   my $ua   = LWP::UserAgent->new();

   return $ua->get(

      "http://example.com/users.txt",

   );

}



  

Stop hard-coding stuff

package MyAuth;

use Moo;

sub fetch_user_list {

   my $self = shift;

   my $ua   = LWP::UserAgent->new();

   return $ua->get(

      "http://example.com/users.txt",

   );

}

● URL
● User-agent



  

Stop hard-coding stuff

package MyAuth;

use Moo;

sub fetch_user_list {

   my $self = shift;

   my $ua   = LWP::UserAgent->new();

   return $ua->get(

      "http://example.com/users.txt",

   );

}

package MyAuth::Testing;

use Moo;

extends 'MyAuth';

sub fetch_user_list {

   my $self = shift;

   my $ua   = LWP::UserAgent::WithLogging->new();

   return $ua->get(

      "http://example.com/users.txt",

   );

}



  

Stop hard-coding stuff

package MyAuth;

use Moo;

sub fetch_user_list {

   my $self = shift;

   my $ua   = LWP::UserAgent->new();

   return $ua->get(

      "http://example.com/users.txt",

   );

}

package MyAuth;

use Moo;

has user_agent => (

   is      => 'lazy',

   builder => sub { LWP::UserAgent->new() },

);

has user_list_url => (

   is      => 'lazy',

   builder => sub { "http://example.com/users.txt" },

);

sub fetch_user_list {

   my $self = shift;

   $self->user_agent->get($self->user_list_url);

}



  

Stop hard-coding stuff

package MyAuth::Testing;

use Moo;

extends 'MyAuth';

sub _build_user_agent {

   LWP::UserAgent::WithLogging->new();

}

package MyAuth::Pony;

use Moo;

extends 'MyAuth';

sub _build_user_list_url {

   'http://example.com/everypony.txt';

}

Look, it's really easy to subclass now!



  

Stop hard-coding stuff

package MyAuth::Pony::Testing;

use Moo;

extends 'MyAuth';

sub _build_user_agent {

   LWP::UserAgent::WithLogging->new();

}

sub _build_user_list_url {

   'http://example.com/everypony.txt';

}



  

Stop hard-coding stuff

● Better for testing
● Better for extensibility



  

Stop hard-coding stuff

● Things that you might be hard-coding without realising:
● File paths

– Including the path to your config file
● Object instances
● Class names

– $class->new() is better than Class->new()



  

Why you were doing it wrong

● You created mutable objects
● You wrote 'private' methods
● You hard-coded stuff



  

How to do it right

● Create immutable objects
● is => 'ro'

● Avoid undocumented methods
● If they seem useful enough, document them
● Otherwise, make them coderefs so they stay private

● Stop hard-coding stuff
● is => 'lazy'

● builder => sub { ... }



  

That's all folks!
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